skip to main content


Search for: All records

Creators/Authors contains: "Jung, Sungyoon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oxy-combustion systems result in enriched CO 2 in exhaust gases; however, the utilization of the concentrated CO 2 stream from oxy-combustion is limited by remnant O 2 . CH 4 oxidation using Pd catalysts has been found to have high O 2 -removal efficiency. Here, the effect of excess CO 2 in the feed stream on O 2 removal with CH 4 oxidation is investigated by combining experimental and theoretical approaches. Experimental results reveal complete CH 4 oxidation without any side-products, and a monotonic increase in the rate of CO 2 generation with an increase in CO 2 concentration in the feed stream. Density-functional theory calculations show that high surface coverage of CO 2 on Pd leads to a reduction in the activation energy for the initial dissociation of CH 4 into CH 3 and H, and also the subsequent oxidation reactions. A CO 2 -rich environment in oxy-combustion systems is therefore beneficial for the reduction of oxygen in exhaust gases. 
    more » « less
  2. null (Ed.)
    This study presents a comprehensive investigation on the aerosol synthesis of a semiconducting double perovskite oxide with a nominal composition of KBaTeBiO 6 , which is considered as a potential candidate for CO 2 photoreduction. We demonstrate the rapid synthesis of the multispecies compounds KBaTeBiO 6 with extreme high purity and controllable size through a single-step furnace aerosol reactor (FuAR) process. The formation mechanism of the perovskite in the aerosol route is investigated using thermogravimetric analysis to identify the optimal reference temperature, residence time and other operational parameters in the FuAR synthesis process to obtain the highly pure KBaTeBiO 6 nanoparticles. It is observed that particle formation in the FuAR is based on a mixture of gas-to-particle and liquid-to-particle mechanisms. The phase purity of the perovskite nanoparticles depends on the ratio of the residence time and the reaction time. The particle size is strongly affected by the precursor concentration, residence time and the furnace temperature. Finally, the photocatalytic performance of the synthesized KBaTeBiO 6 nanoparticles is investigated for CO 2 photoreduction under UV-light. The best performing sample exhibits an average CO production rate of 180 μmol g −1 h −1 in the first half hour with a quantum efficiency of 1.19%, demonstrating KBaTeBiO 6 as a promising photocatalyst for CO 2 photoreduction. 
    more » « less